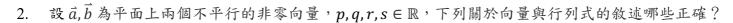

桃園市立武陵高中 111 學年度第一學期 二年級期末考 數學科(A)試題卷

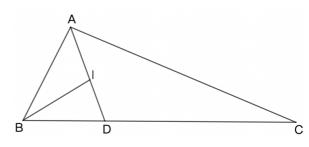
班級:_____ 座號:____ 姓名:____


一、多重選擇題(每題8分,共24分。答錯一個選項得5分,答錯兩個選項得2分,答錯三個選項 以上得0分,未作答不給分。)

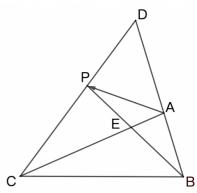
- (A) 以 $A \cdot B \cdot C \cdot D \cdot E$ 為始點、終點,可決定 10 種不同非零向量
- (B) $\overrightarrow{ED} \cdot \overrightarrow{AB} = \overrightarrow{DC} \cdot \overrightarrow{AB}$
- (C) 若正五邊形邊長為 3 ,則 $\overrightarrow{AC} \cdot \overrightarrow{AE} > 5$

- (A) $\ddot{a} r |\vec{a}| = s |\vec{b}|$,則 $r\vec{a} + s\vec{b}$ 必可平分 \vec{a} 與 \vec{b} 的夾角
- (B) 若 $\vec{c} = r\vec{a} + 2\vec{b}$, 已知當 $|\vec{c}|$ 最小時, r > 0, 則 \vec{a} 和 \vec{b} 夾角為銳角
- (C) 若 \vec{a} 在 \vec{b} 上的正射影為 \vec{c} , \vec{b} 在 \vec{a} 上的正射影為 \vec{d} ,且 $|\vec{c}| = 2|\vec{d}|$,則 $|\vec{a}|$: $|\vec{b}| = 1:2$
- (D) 若 $|\vec{a}| = |\vec{b}|$,且 $|\vec{a} \vec{b}| |\vec{a} + \vec{b}| = \sqrt{2}$,則 \vec{a} 和 \vec{b} 夾角必為鈍角

3. 已知 3 個非零向量 \vec{a} , \vec{b} , \vec{c} , 若 \vec{a} + $2\vec{b}$ + $3\vec{c}$ = $\vec{0}$, 且 \vec{a} · \vec{b} = \vec{b} · \vec{c} = \vec{c} · \vec{a} = k, 則下列選項哪些正確?

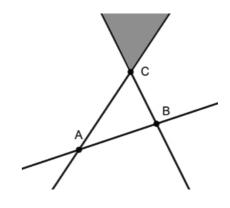

- (A) k > 0
- (B) $|\vec{a}| = \sqrt{5k}$
- (C) $|\vec{b}| = \sqrt{-2k}$
- (D) <u>b</u> 與 <u>c</u> 之 夾 角 為 45°
- (E) \vec{a} 與 \vec{b} 所形成平行四邊形面積為 \vec{b} 與 \vec{c} 所形成平行四邊形面積的 3 倍

二、填充題(配分如右表,共60分)

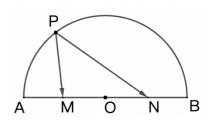

答對題數	1	2	3	4	5	6	7	8	9	10
得分	8	16	24	30	36	42	48	52	56	60

2. 設
$$\vec{a} = (7, -\sqrt{15})$$
,若 \vec{b} 與 \vec{a} 垂直,且 $|\vec{b}| = 1$,則 $\vec{b} =$ ______

5. 如圖(此為示意圖), $\triangle ABC$ 中, $\overline{AB}=3$, $\overline{AC}=7$, $\angle A$ 的角平分線交 \overline{BC} 於 D,I 為 $\triangle ABC$ 的內心,已知 $\overline{AI}=\frac{7}{25}\overline{AB}+\frac{3}{25}\overline{AC}$,求 $\overline{BC}=$


7. 如圖(此為示意圖),已知 \overline{AB} : $\overline{AD} = 2:3$, \overline{AE} : $\overline{EC} = 1:4$, \overline{BE} 與 \overline{CD} 交於P 點, $\overline{AP} = \alpha \overline{AB} + \beta \overline{AC}$,則 $(\alpha, \beta) =$ _______

9. 如圖, $\overrightarrow{AB} = (3,1)$, $\overrightarrow{AC} = (2,3)$, 若 P 為平面上一點, 且 $\overrightarrow{AP} = \alpha \overrightarrow{AB} + \beta \overrightarrow{AC}$,


已知 AP 满足以下條件:

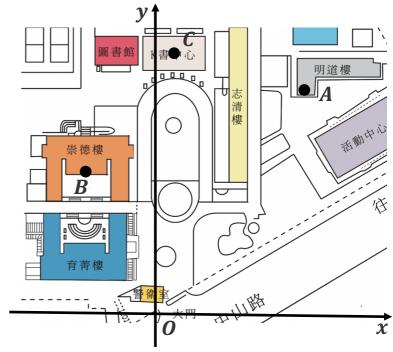
- ① α,β 皆為整數
- ② P點落在塗色區域 (不包含 AC 及 BC)
- ③ $\alpha \overrightarrow{AB}$ 與 $\beta \overrightarrow{AC}$ 所形成之平行四邊形面積小於 110

10. 如圖, \overline{AB} 為圓 O 的直徑,P 為圓弧 AB 上一點,M, N 在直徑上且對稱於 O (O 為圓心),

設 $\overline{AB}=a$, $\overline{MN}=b$, 試以 a 、 b 表示 \overline{PM} · $\overline{PN}=$ ______ (請化簡至沒有括號的形式)

三、計算證明與混合題 (共 16 分,無詳細說明或計算過程不予計分)

- 1. 將奇異果高中平面圖視為一坐標平面,以校門口為原點 O(0,0),根據相對位置設立大致的坐標,明道樓位於 A(6,8),崇德樓位於 B(-3,5), K 書中心位於 C(1,9) ,請問:
 - (1) 下列何者為直線 AB 的參數式?


(單選題,不需計算過程,3分)

$$(A) \begin{cases} x = 6 + 3t \\ y = 8 - 9t \end{cases}, t \in \mathbb{R}$$

$$(B) \begin{cases} x = -3 + 6t \\ y = 5 + 8t \end{cases}, t \in \mathbb{R}$$

$$(C) \begin{cases} x = -3 + 3t \\ y = 5 + t \end{cases}, t \in \mathbb{R}$$

(D)
$$\begin{cases} x = 6 + t \\ y = 8 + 3t \end{cases}, t \in \mathbb{R}$$

- (2) 園遊會時,小町想在校園中P處設置一甜點攤位,為了方便明道樓、崇德樓及K書中心的同學前往,決定設立在明道樓、崇德樓位置的連線上,並且距離K書中心最近的位置處,試求攤位的坐標。(5分)
- 2. (1) 設 O 為 $\triangle ABC$ 的外心, 試證明 $\overrightarrow{AO} \cdot \overrightarrow{AB} = \frac{1}{2} |\overrightarrow{AB}|^2$ (3分)
 - (2) $\triangle ABC$ 中, $\overline{AB} = 6$, $\overline{BC} = 2\sqrt{7}$, $\overline{CA} = 4$,O 為 $\triangle ABC$ 的外心,若 $\overline{AO} = x\overline{AB} + y\overline{AC}$, 試求數對(x,y) (5分)

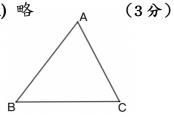
桃園市立武陵高中 111 學年度第一學期 二年級期末考 數學科(A)答案卷

			班級:	座號:		姓名:
一、多	重選擇題(每題8分,共24	分)				
1.		2.			3.	
二、填	充題(配分如表,共60分)					
1.		2.			3.	
4.		5.			6.	
7.		8.			9.	
10.		1				
 三、計		無詳細		不予計分)		
1. (1)_	(單選題)					
(2)						
(2)						
2. (1)	A					
	В					
(2)						

桃園市立武陵高中 111 學年度第一學期 二年級期末考 數學科(A)解答

一、多重選擇題(每題8分,共24分。答錯一個選項得5分,答錯兩個選項得2分,答錯三個選項 以上得0分,未作答不給分。)

1.	BD	2.	DE	3.	CE


二、填充題(配分如下表,共60分)

答對題數	1	2	3	4	5	6	7	8	9	10
得分	8	16	24	30	36	42	48	52	56	60

1.	-25	2.	2. $\left(\frac{\sqrt{15}}{8}, \frac{7}{8}\right) \neq \left(\frac{-\sqrt{15}}{8}, \frac{-7}{8}\right)$		5
4.	$\frac{40}{41}$	5.	15 送分	6.	11x + 2y + 3 = 0
7.	$(\frac{-12}{13}, \frac{5}{13})$	8.	$(-2,\frac{14}{3})$	9.	18
10.	$\frac{a^2-b^2}{4}$				

三、計算證明與混合題(共16分,無詳細說明或計算過程不予計分)

(2)
$$\left(\frac{9}{5}, \frac{33}{5}\right)$$
 (5%)

$$(2) \left(\frac{4}{9}, \frac{1}{6}\right) \qquad (5\,\%)$$

$$\begin{cases} \overrightarrow{AB} \cdot (x \overrightarrow{AB} + y \overrightarrow{AC}) = \frac{1}{2} \overrightarrow{AB}^{2} \\ \overrightarrow{AC} \cdot (x \overrightarrow{AB} + y \overrightarrow{AC}) = \frac{1}{2} \overrightarrow{AC}^{2} \end{cases} \implies \begin{cases} 36x + 12y = 18 \\ 12x + 16y = 8 \end{cases} \Rightarrow \begin{cases} x = \frac{4}{9} \\ y = \frac{1}{6} \end{cases}$$